Coding, Humanism, Pedagogy.

Sam Popowich

Plenary Session, Digital Pedagogy Institute, University of Toronto -
Scarborough, August 19 - 21, 2015.

Over the last few years, the topic of technological or digital literacy has
come to the fore in librarianship. In public library systems where this is
most common, it can be understood partly as an extension of the
provision of personal computer and internet training which began in the
mid-1990s, and partly as an adoption by libraries (again, mostly public)
of “maker” and “hacker” culture. From the public-library perspective,
digital literacy support tends to take the form of training, assistance,
equipment, and space - makerspaces are a growing element of library
spaces and services. On the staff side, the question of digital literacy has
often focused on whether librarians should learn to code.
“Makerspaces” and “coding for librarians” are two major focal points of
debates around social class, gender, and race in libraries, contested
through the lens of privilege and diversity. On the one hand, some argue
that makerspaces and coding have visible practical benefits
independent of social, cultural, and political issues; learning and

teaching new skills, making space and equipment available to all is seen

as levelling. On the other hand, privileging making and coding can be
interpreted as perpetuating race, class, and gender dominance, in fields
(librarianship and technology) that have not yet solved (and in some
cases not yet recognized) their race, class, and gender problem.

We can’t divorce programming as a skill or a practice from its
social, cultural, and political context. But at the same time, it is a
valuable skill in the information and software driven society of the 21st
century. The recognition of its importance, and of the ubiquity of
technology in general, tends to fall into two camps: a dystopian
technological determinism, and a kind of utopian humanist paradise,
both of which drastically oversimplify - or even ignore - the complexity
at issue here. Is it possible to adopt coding as a skill without subscribing
either to determinist or utopian ideologies? Might we look at things
dialectically and discover a third term, which might allow us to open up
a space of resistance to the patterns of domination in which coding is
embedded without closing our eyes to the limitations and structural
inequalities of that space? Might we think about learning to code as part
of a critical, liberation pedagogy, as outlined by Freire?

[don’t consider myself qualified to speak about issues of race and

gender. While I acknowledge that race and gender problems exist at the

exact conjunction of the two fields I participate in professionally,
librarianship and technology, there are other people better qualified to
talk about the experience of gender and racial discrimination in this
area, people like Andromeda Yelton, Cecily Walker, Chris Bourg, Bess
Sadler, and others. But what I'm interested in speaking about today is
the question of agency - that is, class - within the structures of early 21st
century capitalism.

In many ways, the work of the 21st century is simply the
continuation of mechanization and systematization of the work of the
19t and 20t centuries. We live in the age of the software and computer
engineer, and of hyper-taylorism in all that can’t be engineered away, a
good example of which are the disclosures over the last year or two of
the way Amazon “manages” its warehouse staff. The scientific,
engineering, utopian worldview, with its assumptions of reason and
meritocracy, privileging of scientific truth, and promise of salvation, lies
behind many of the cultural struggles we see today. In many ways the
rise of “geek culture” is a symptom of this. Engineering seems to offer a
pragmatic route out of the quagmires of essentialism, argument, and
subjectivity that are unavoidable and interesting (if messy) components

of the human experience. We might resist the totalizing impulse of

engineering, but we can’t avoid it. I would like to talk a little bit about
how, as humanists, we might use the quintessential engineering skill of
computer programming to further humanist projects, support humanist
enquiry, and contribute to humanist pedagogy.

Many people have written on the dichotomy between what I'm
going to call engineering and humanism. Karl Marx spoke of the
tendency of capitalism to replace human labour by machinery in the
mistaken belief that inefficient human labour is a limit on profit, and
Horkheimer and Adorno addressed the consequences of a privileging of
the Enlightenment’s “instrumental reason”. David West, in his 2004
book on object-oriented design and programming, Object Thinking, calls
the two terms of this dichotomy “formalism” and “hermeneutics” and
defines the distinction as one between rationalism and determinism on
the one hand, arising from the work of Descartes and Leibniz, and on the
other hand, emergence, relationality, and interpretation. In West's view,
the two approaches can be exemplified in computer science, in the
debates around Artificial Intelligence that arose in the 1970s. Formalist
Al, based on a symbolic theory of cognition, saw intelligence as
deterministic, while those who advanced a hermeneutic position saw

intelligence as behavioural and emergent.

Closer to home, in “The Humanist as Reader”, Anthony Grafton
describes the differences between the practices of medieval and
renaissance readers. Grafton compares the work of the medieval
scholastics to that of builders:

By decades of hard work with hammer and chisel, they fashioned

a complex Gothic set of walls and buttresses which preceded,

surrounded, and supported the texts: headings, commentaries,

separate treatises. This apparatus succeeded in imposing a

medieval outlook on the most disparate ancient texts.!
The humanists, in reaction to the over-engineering of the scholastics,
rescued classic texts by stripping them of their medieval accretions,
looking for an unmediated engagement with the text. The medieval texts

were laid out in two columns and written in a spiky, formal Gothic

script. They occupied a relatively small space in the centre of a

large page. And they were surrounded, on that page, by a thick

hedge of official commentary written in a still smaller, still less
inviting script. (...) Such books naturally repelled Renaissance
scholars, to whom they seemed a visual as well as an intellectual

distortion of their own content. 2
New designs for books, scripts, and libraries, replaced the old Medieval

versions, and allowed reading to escape from the confines of Medieval

authority, both intellectually and physically. The pocket-sized editions

I Grafton, p. 182.
2 Grafton, p. 184.

of Manutius and others, printed in the new humanist hand, allowed
people like Machiavelli to colonize new spaces of reading, spaces other
than libraries, scriptoria, or private studies. Grafton opens with a letter
from Machiavelli describing the variety of his reading practice, reading
different books in his study than in the woods. Such informal reading
was impossible with medieval books.

To my mind, this distinction between the over-engineered,
Medieval approach to texts and the unmediated, enquiring approach of
the humanists, is apparent in many different disciplines. My academic
background is in cultural musicology, and one of the areas of debate in
the field is around performance technique. A distinction is drawn
between the formalist, engineered technique of the conservatories, and
the relational, emergent technique learned in jazz clubs or on the streets
of Rio. An example from “classical” guitar will suffice.

John Williams, one of the main exponents (along with Julian
Bream) of the post-Segovia classical guitar, is often acclaimed for his
“perfect” tone and technique, and at the same time criticized for his lack
of emotion and “robotic” playing. His renditions of Bach and Barrios
allow the listener to hear every note, even at high speed, and in some

ways it could be argued that Williams “gets out of the way” of the music.

But criticism is levelled at the lack of humanism, of Williams’ over-
engineered sound. Compared to Williams, the jazz guitarist Lenny
Breau, and the jazz/samba/bossa nova guitarist Baden Powell sound
sloppy, with imperfect technique. Comparing a well-known piece of
Bach’s played by all three guitarists, exposes their different styles and
approaches. On the one hand, Williams’ performance is engineered to be
perfect, repeatable in Walter Benjamin’s sense: the outcome is pre-
determined. For Breau and Baden Powell, on the other hand, the
performance is extemporized, exploratory, and open.

There is nothing wrong with either of these approaches. Williams’
recordings of Bach and Barrios have been an important part of my
musical experience for many years. But there is something in Breau and
Baden Powell that resists, in a ragged way, the instrumental logic of
capitalism. Their music seems to repay repeated interrogation and
investigation in a way that Williams’ does not.

I've introduced these examples of engineering vs. humanism in
order to raise the question of employing typically “engineering”
practices in the humanist disciplines. In a recent talk, Avdi Grimm, a
well-known figure in the Ruby programming community, approached

this topic from the other direction. Speajing to engineers At the Tropical

Ruby conference in Brazil earlier this year (2015), Grimm argued that
the Ruby community is well-placed to provide “an end-run around the
formalist school”, a space where informal, hermeneutic approaches to
software development can thrive3. “The Ruby community,” he says,
“maybe more than any other community, is steeped in informalist, agile
practices”. The Ruby programming language, is “an informal language”:
“Ruby doesn’t try to tell you how to do things”; its community values
“conversation and consensus over top-down architecture”. Grimm sums
up by saying that “in a programming world that pays lip-service to 00
ideas while still teaching formalist methods, Ruby is a stubborn island of
informalism”.

But why is any of this important? Is this more significant than
internecine squabbles within the software-development field? I believe
it is. The point of Grimm’s talk is not that “Ruby is the best, most
community-driven language and all other languages are bad”, but that if
we understand programming languages as representing particular
philosophies or world-views, then the informal, behavioural,
hermeneutic way of describing, understanding, and working with the

world that Ruby espouses can be a valid, new approach to problems that

3 Grimm, Avdji, “The Soul of Software”, Tropical Ruby Keynote 2015. Youtube.

had previously been understood as purely engineering problems.
Understanding the distinction between formalism and hermeneutics, in
Grimm’s view, opens a space within software development for informal,
emergent, hermeneutic practices.

Much of Grimm’s talk draws on West's Object Thinking, an
introduction to the philosophy and culture of object-oriented design and
programming, and agile software development. Both object-oriented
programming and agile were developed as methods of resisting
traditional, monolithic tendencies in software design and development,
organizational culture, work processes, collaboration, and team
composition. In a nutshell, agile methodologies attempted to create
space for more of what we have been calling informal, hermeneutic
practices. West's thesis, that object thinking and agile methodologies
can improve both programmers and software, is founded on the idea
that “software development is neither a scientific nor an engineering
task. It is an act of reality construction that is political and artistic”.

Extreme programming - and to a great extent all of the agile

methods - represents a new and creative idea about software

development. (...) The essence of this new idea might be distilled
to a single sentence: “Software development is a social activity”.4

4+ West, 26.

For West, agile methodologies are not simply just another variety of
software engineering, but represent the latest in a long line of
challenges to the scientific, formalist, engineering worldview of
software development:
Sharing the goal of software improvement but rejecting the
assumptions implicit in software engineering, several alternative
development approaches have been championed. Creativity and
art have been suggested as better metaphors than engineering.
Software craftsmanship is the current [2004] incarnation of this
effort.
Now, in order to set object thinking and agile methods up as an
alternative to traditional software engineering, West places significant
theoretical weight on the dichotomy between “formalism” and
“hermeneutics”. That this is an over-simplified model should be
apparent - as always the truth is dialectical - but [hope I've shown that
there is an intuitive recognition of the at least local validity of thinking
in these terms. For West, formalism has its roots in the Enlightenment
and 20t century successes in science and engineering.
The universe was considered a kind of complicated mechanism
that operated according to discoverable laws. Once understood,

those laws could be manipulated to bend the world to human will.
Physicists, chemists, and engineers daily demonstrated the

5 West, xvii.

validity of this worldview with consistently more clever and
powerful devices.t
It is useful to contrast this utopian view of rationality with the view
expressed in Horkheimer and Adorno’s Dialectic of Enlightenment:
Interested parties explain the culture industry in technological
terms. (...) A technological rationale is the rationale of domination
itself. It is the coercive nature of society alienated from itself.
Automobiles, bombs, and movies keep the whole thing together
until their levelling element shows its strength in the very wrong
which it furthered. It has made the technology of the culture
industry no more than the achievement of standardisation and
mass production.
This connection may seem tenuous, the theoretical freight too much for
West's argument to bear. But Avdi Grimm does make the connection
between an informal, humanist, hermeneutic conception of software
development and positive social change. Just as “software development
is a cultural activity”’, so the philosophy behind object thinking and
agile methodologies is grounded in the possibility of creating a positive

culture, of creating consciousness that might resist central control.

Elements of this hermeneutic, humanist culture are:

6 West, 48.
7 West, 25.

* A commitment to disciplined informality rather than defined
formality
* Advocacy of a local rather than a global focus
* Production of minimum rather than maximum levels of design
and process documentation
* (Collaborative rather than imperial management style
* Commitment to design based on coordination and cooperation
rather than control
* rapid prototyping instead of structured development
* Valuing the creative over the systematic
* Driven by internal capabilities instead of conforming to external
procedures?®
[won’t go into details, but suffice it to say that the tensions in this list
exist also within librarianship and, I assume, within most branches of
the academy.

The debate around “should librarians learn to code” came to the
fore recently, and was even discussed on Thinks and Burns with Fink and
Byrne, a local library podcast®. In participating in this debate, I came to
realize what I think is an important, unspoken, assumption: that those
who advocate for librarians to learn to program are advocating an
engineering approach. The fear is that of totalization: that all librarians
should learn to code, that coding should be a structural part of LIS

education, that our work will be transformed into a dehumanized

engineering job. This fear takes for granted the idea that “programming”

8 West, 65.
9 Thinks and Burns with Fink and Byrne, episode 3.

and “software engineering” are the same thing, and that the engineering
approach is the only approach to working with machines and data
through code. I believe that the opponents of “librarians should learn to
code” are imputing more value, more weight to that statement than is
meant. It’s true that, as Gillian Byrne points out, “librarians should learn
to code” is an unhelpful shorthand, a slogan obscuring a very complex
dynamic, but this does not justify an immediate leap to “all librarians
must code” or “computer science classes should be taught in library
schools”. There is an alternative, less formal, more hermeneutic
approach that I would like to think through.

First of all, I'd like to think about what we mean by
“professionalism” versus “amateurism”. Librarianship has a fraught
relationship with “professionalism”. It is a field which tends to pride
itself on being a profession, while being on the one hand definitely not a
profession in the sense that lawyers, doctors, and engineers are, and on
the other hand, perennially unsure and insecure about its work and its
value. Because of this, as well as the challenge of managing extremely
complicated information and organizational systems, there is a
tendency to try to formalize all the work that we do, in the belief that it

will make our professional status more convincing. This makes sense: in

order to make the case for budgets, for staffing, to be taken seriously in
the academy, we need to be able to point to our qualifications and
achievements. But I think that this approach can sometimes prevent us
from being agile or innovative, makes us slow to change, and slow to
adopt new techniques and approaches, because we require so much
formal and professional apparatus to be adopted at the same time. We
tend to overthink, overengineer, and overprofessionalize our practices.
We find it difficult to accommodate and employ “soft”, “subtle”, and
“amateur” skills, approaches, and talents, at the same time as we
recognize their value. A good example is the processes surrounding
reference desk interaction: while recognizing the necessity of agility,
personality, flexibility, relationships, etc, we constantly overload
reference desk staff with policies, procedures, and documentation.
When I speak about librarians learning to program, [mean it in an
amateur sense, in the sense that we are amateur cooks, amateur bike
mechanics, amateur musicians, or what have you. I think the informal,
hermeneutic approach to programming has many benefits for the kind
of work librarians and other humanists do, and I don’t want to see it
smothered under the weight of overengineered qualification or

processes.

This kind of amateur approach has only really become available
over the last fifteen or so years, with the advent of lightweight, high-
level languages which don’t require much infrastructure to run. The
explosion of web-programming, and the rapid development of Web 2.0
and semantic web/linked data technologies is due in part to this change
as well. Python (1991), PHP, Javascript and Ruby (all 1995) took
programming back from overengineered languages like C++ and Java
and opened it up to amateurs. There had always been amateur
programmers, of course, but the combination of these lightweight
languages and the web made it easier to write, run, and share code.
Today, we see lightweight versions of older, esoteric languages like
LISP. Clojure, a LISP-dialect that runs on of the Java Virtual Machine
appeared in 2007, and provides an alternative way to thinking about
code and data from the more mainstream object-oriented paradigm.

One of the characteristics of languages like Ruby and Python is
that they are open-source, and are both products and drivers of the
explosion in open-source activity that we’ve seen in recent years. Open
source (and openness in general) is part of the informal, hermeneutic
approach. The formalist, engineering approach struggles to

accommodate the different standards of work, collaboration,

documentation, and process that openness represents. This tension can
be seen in debates around all sort of openness: open access publishing,
open educational resources, open source software, open data. There is
obviously a class criticism of self-congratulation around openness;
openness comes with certain educational, leisure-time, financial, and
access requirements. But this criticism should not make us proponents
of closed-access, closed-data, or proprietary software, which simply
plays into the hands of a hermetic class of social engineers.

So what do [mean when I say “librarians should learn to code”;
what does that slogan, in fact, obscure? Part of what [mean is that there
is a certain level of technological literacy that librarians and humanists
need, and that coding is a good way to achieve that. Another aspect is
that I think programming is an incredibly useful tool in our increasingly
data- and software-driven work. But there are many other components
to this statement. Many librarians feel exploited by library software
vendors, and the quality of closed-source library software is generally
not high. Learning to program helps us a) to understand software and
speak knowledgably with our vendors and b) gives us back a measure of
control over our own machines to make us less dependent on closed-

source software and software vendors in the first place. There’s also an

information literacy component to this: the more we understand about
software, the more we can communicate, teach, and share that
understanding. Librarianship has always been a technology profession,
and software is the simply current foundation of technology.

Another benefit to learning to programme is the development of
computational thinking. Again, this phrase might raise the spectre of a
totalizing, formal, inflexible way of thinking, but computational thinking
encompasses much more than that. Our technological world runs on
computation, but there are many different flavours of computation, and
of ways of approaching and thinking about a computational problem.
Object-oriented languages, such as Ruby, model real-world or data
objects as atomic collections of attributes and behaviour, maintaining a
separation between data and the code that operates on that data.
Functional languages like Clojure model objects as collections of values,
and make no distinction between data and code. Working in each of
these languages requires thinking differently about the problem at
hand.

Do I think all librarians need to code? No, there are plenty of
positions where librarians can probably get by without coding. Do I still

think it would be a useful skill for them? Absolutely. Do [think

librarians need to code, as opposed to learning other aspects of
information technology, like automation, system administration, use of
high-level systems like OpenRefine, Drupal, etc? Again, the answer is a
qualified no. There are many librarians active in all areas of technology
who have gained the qualities and skills I've been talking about without
specifically knowing how to code, who are extremely knowledgeable
about software, systems, and information. Do I think learning to code
would be useful for them? Sure.

What, then, are the practical elements specific to programming
that I think are useful for librarians, and by extension all humanists?

In the first place, and perhaps most simply, there are the
repetitive tasks that librarians perform on a regular basis, that could be
automated. Parsing data files, producing reports, etc. Quite often these
tasks take a non-trivial amount of time and effort, both of which remain
constant no matter how many times the task is repeated. Perhaps just as
often, the librarian is unable to perform the task themselves, and have
to put arequest in to IT, where it is assigned a priority, and the librarian
waits for a response. Being able to program would allow these tasks to

be automated and would not require the intervention of IT. For many

librarians, this kind of work, both behind the scenes and in liaison with
faculty, would be the extent of their code use.

But that’s kind of a trivial example. A more interesting problem is
the question of prototyping or domain exploration. A lot of our systems
work involves data manipulation, conversion, cleanup, and other kinds
of processing. This work cannot be done manually anymore, and so
requires software tools to do it. There are two options: buy closed-
source software, or deploy/customize/write your own. Many metadata
and cataloguing librarians have experience using XSLT to manipulate
XML data; this is one way to approach data, but other programming
languages take different approaches, providing flexibility in terms of
thinking about, modeling, and working with the data that we have.
Being able to quickly and easily explore a data domain or problem, to
quickly and easily write simple code that allows you to define and begin
working with data, without having to go satisfy the (often
overengineered) requirements of IT departments, is extremely valuable.
This kind of coding as “thinking out loud” is known in the Agile
methodology as a “spike”, and is meant to be as informal as possible. It’s

the equivalent of whiteboarding, and just as whiteboarding sometimes

leads to a formal solution, sometimes its benefit is purely in quickly and
simply framing a problem. Coding allows us to “whiteboard with data”.

Knowing how to code also allows us to overcome limitations of
open-source software solutions. My current project at the University of
Alberta is to implement a new search interface/library catalogue.
Rather than using an unsatisfactory closed-source solution, we decided
to go with an open-source project. Open-source is not of course
completely “free”, and there was a lot of work to be done in order to
customize the software to fit our needs. But we could do this work in-
house, we didn’t have to outsource or rely on outside developers to
implement the requirements of our domain experts (students, faculty,
and librarians).

These are immediate practical benefits to learning how to code.
There are other, less tangible benefits. One of the characteristics of
capitalism is alienation from the product of labour: building software
gives a measure of agency and investment back to workers. This feeling
is fleeting, perhaps even delusional, but it is real. Amateur learning
itself, in my view, can provide a feeling of resistance to the instrumental
logic of training and education that we are all embedded in. Passing

along the appreciation of amateurism, through less formal training

programs like Ladies Learning Code or Software Carpentry, or through
very informal mechanisms like pair-programming sessions or hackfests,
can also, I think, open up a space for anti-instrumental and anti-
totalizing approaches to technology.
How might this space actually be opened up, in practice? In his
2011 book, Representing Capital, Fredric Jameson raises an important
question about technology: “is it cause or effect, the creature of human
agency or the latter’s master, an extension of collective power or the
latter’s appropriation?” Two attempts at answering this question, in
Jameson’s view, can be found in technological determinism, and the
kind of humanist paradise I began this talk by outlining. But Jameson
goes on to say that
Neither outcome is conceptually or ideologically satisfying, both
are recurring and plausible interpretations of Marx, and each
seems incompatible with the other. Perhaps the union of
opposites offers a more productive view of what in Marx is staged
as an alternation: a phenomenon like capitalism is good and bad
all at once and simultaneously - the most productive as well as
the most destructive force we have so far encountered in human
history, as the Manifesto puts it.
The class, gender, and race critiques of technology, technological

determinism, and a gleeful, unquestioning rush to the Ilatest

technologies, are all valid. At the same time, the possibilities for sharing,

collaboration, agency, investment and commitment to work, the
possibilities of overcoming alienation however briefly and however - in
the end - fruitlessly, all of these are part of becoming more involved in
the technological landscape of our professions. Is coding the only way of
becoming more involved? No, of course not, but I feel it has the lowest
barrier and a high rate of return.

What does this have to do with pedagogy? If we follow Freire and
define praxis as “reflection and action directed at the structures to be
transformed”, then learning to code / teaching to code is important in a
number of respects. In terms of the structures to be transformed, there
is on the one hand, the structure of private property, challenged by
participation in cultures of openness, sharing, and collaboration that
comes with writing code and engaging in open-source projects; then
there are the structures of gender, race, and class dominance that have
traditionally been part of the culture of software engineering (even
when that tradition is in fact, incorrect - as in the denial of the role
women played in the first century of computing) there are structures of
technologism and technological determinism that, following Marx, any
critique of capitalism has to deconstruct; and there are finally structures

within our professions. In librarianship, there are structural

relationships between libraries and vendors, between hierarchical
levels of administration, and between what I will call neoliberal and
progressive ideologies. And these structures are challenged both by
one’s learning, and the social networks that arise through that practice
(I think of communities like #codenewbies, exercism.io,
#critlib/#mashcat, etc), but also through informal teaching - sharing
information through hackfests, unconferences, and pair programming,
and the formal process of teaching (which, in librarianship, tends to be
concentrated in Information Literacy sessions and Library and
Information Science programs). In this respect, “coding” becomes a bit
of a McGuffin. The semantic content is unimportant - what is important
is the activities and relationships that arise through the process of
learning and acting, no matter what the object is. Coding is low barrier
and has developed pedagogical tools, systems, and networks over the
last few years which unix system administration, for example, has not.
You could say that, in essence, I think librarians should learn code
because Ladies Learning Code exists.

In conclusion, I think it’s safe to say that “learning to code” can’t
happen in isolation. It has to be a social activity, it has to compete, in

some sense, with what Marx calls the “nexus between man and man”

that is “naked self-interest”. There are many other skills that humanists
could adopt, there are many other arenas in which capitalist technology
might be challenged, there are many other methods by which a critical
pedagogy might be adopted, but learning to code seems, to me, at this

historical moment, to lie at the intersection of all these considerations.

